Sandeep Nagar, Girish Varma

Parallel Backpropagation for Inverse of a Convolution with
Application to Normalizing Flows: Supplementary Materials

We provide a comprehensive extension to the main paper, offering in-depth insights into the experimental setup,
additional experimental results, and rigorous mathematical proofs. The Supplementary begins with experimen-
tal specifications Section 7, including information about model architecture, training parameters, and hardware
used. In the next section 8, we present an interesting application of inverse convolution layers in image classifi-
cation, demonstrating high accuracy on the MNIST dataset with a remarkably small model. Section 9 presents
thorough proofs of two theorems related to the backpropagation algorithm for the inverse of convolution layers.
These proofs, presented with clear mathematical notation and step-by-step derivations, establish a theoretical
foundation for computing input gradients and weight gradients in the context of inverse convolution operations.

7 Experimental Details

The architecture of SNF is the starting point for Inverse-Flow architecture and all our experiments. All models
are trained using the Adam optimizer. We evaluate our Inverse-Flow model for density estimation (BPD, NLL),
Sampling time (ST), and Forward time (FT) with a batch size of 100 for all experiments. For MNIST, we use an
initial learning rate of le — 3, scheduled to decrease by one order of magnitude after 50 epochs for all datasets
but CIFAR10, which is decreased every 25 epochs. All the experiments were run on NVIDIA GeForce RTX 2080
Ti GPU. For MaCow, SNF, MaCow, and SNF, we use the official code released by the authors. Emerging was
implemented in PyTorch by the authors of SNF, we make use of that. We have implemented CInC Flow on
PyTorch to get the results.

Forward pass

Output:

= = = = Softmax = Label (7)

: Inv. Inv.
Input: Conv-1 Conv-2

MNIST digit fe

Error backpropagation

¢ .

Figure 4: Overview of a small image classification model with two inverse of convolution (3 x 3 inv-con) layers
with 97.6% accuracy on MNIST dataset.

8 Image Classification using Inverse of Convolution Layers:

For MNIST digits image classification using the inverse of convolution (inv-conv) layers and proposed its back-
propagation algorithm, we trained a two inv-conv layer and one fully connected layer model with 16 learnable
parameters for inv-conv layers. See Figure 4; this simple and small two inv-conv and one fully connected (FC)
layers model gives 97.6% classification accuracy after training for 50 epochs.

9 Detailed Proofs

In this section, we provide the proofs relating to the proposed backpropagation algorithm for the inverse of the
convolution layer. First, we provide the following notation and the equation for the gradients.

Sandeep Nagar, Girish Varma

Notation: We will follow the notation used in the main paper. , 2
We will denote input to the inverse of convolution (inv-conv) by y € R™" and output to be z € R™ . We will be
indexing x,y using p = (p1,p2) € {1,--- ,n} x {1,--- ,n}. We define

A(p) ={(4,7) : 0 <p1 —i,pa —j <k} \ {p}.

A(p) informally is set of all pixels except p which depend on p, when convolution is applied with top, left padding.
We also define a partial ordering < on pixels as follows

p<q & p1<q andp; <g.

The kernel of k x k convolution is given by matrix W € RF*¥_ For the backpropagation algorithm for inv-conv,
the input is

2 8L 2
r€R™ and — € R™,
ox

where L is the loss function. We can compute y on O(mk?) time using the parallel forward pass algorithm
Aaditya et. al. The output of backpropagation algorithm is

OL 2 oL 2
—— eR™ —— e RF
3y S and W €

which we call input and weight gradient, respectively. We provide the algorithm for computing these in the next
2 subsections.

9.1 Proof of Theorem 1

Computing Input Gradients Since y is input to inv-conv and z is output, y = convy () and we get the
following m? equations by definition of the convolution operation.

Yp :J,‘p+ Z W(k,k:)—erq'xq (7)
a€A(p)

Using chain rule of differentiation, we get that

oL oL on,
Yy - dzg Oy,

Hence if we find S—Z; for every pixels p, q, we can compute g—;; for every pixel p.

Theorem 1: Input y gradients

4'1; .
) =40 ifg&p 9)
Yp Oz, _ . .
- ZTEA(p) Wik k) —r By, otherwise.

Proof. We will prove Theorem 1 by induction on the partial ordering of pixels.

Base Case: For p = (1,1), which is the smallest element in our partial ordering:

From Equation (7), we have: y(1,1) = @(1,1) . This implies: gz;:; =1 and for any ¢ # (1,1): 65(?’1) = 0. This

satisfies the theorem for the base case.

Inductive Step: Assume the theorem holds for all pixels less than p in the partial ordering. We will prove it
holds for p.

1. For ¢ £ p, x4 does not depend on y, due to the structure of the convolution operation. Therefore, g—j" =0.
Jp

Sandeep Nagar, Girish Varma

2. For ¢ < p, we differentiate Equation (7) with respect to y,:

Ozp Oxmyp Oz,
5 = + Wik k)y—ptr - 35—
oy, Oy Te%%))7 By,
ox ox,
1= 871) + > Wik —per- T (10)
RTINS Yr
Rearranging 10:
ox ox,
So=1- > Wiewy—pir - . (11)
Yr reap) Yr
This is equivalent to the third case in the theorem, with ¢ = p.
3. For q < p, we can write:
Lg =Yq — Z W(k k)—q+r " Tr

reA(q

Differentiating with respect to y,:

ox 0 ox,
— = yq_ Z Wik k)y—q+r - 35—

0 0
o O K v
Since g < p, ayq = 0. Therefore:
Ox ox,
= 2 Womarr g, 12)
Yp
reA(q)
This is equivalent to the third case in the theorem.
Thus, by induction, the theorem holds for all pixels p. O

9.2 Proof of Theorem 2

Computing Weight Gradients From Equation 7, we can say computing gradient of loss L with respect to
weights W involves two key factors. Direct influence: how a specific weight W in convolution kernel directly
affects output x pixels, and Recursive Influence: how neighboring pixels, weighted by kernel, indirectly influence
output = during inverse of convolution operation. Similarly, to compute gradient of loss L w.r.t filter weights W,
we apply chain rule:

oL oL oz
oW = ax oW (13)

where: g—L is gradient of loss with respect to output x and inverse of convolution operation is applied between

‘gL and output . Computing the gradient of loss L with respect to convolution filter weights W is important in
backpropagation when updating the convolution kernel during training. Similarly, L/OW can be calculated as
Equation 13 and 0xz/OW can be calculated as (Equation 13) for each k; ; parameter by differentiating Equation

7TwrtW:

oL 3:17q
8W axq W,

(14)

Equation 14 states that to compute the gradient of the loss with respect to each weight W,, we need to:

Sandeep Nagar, Girish Varma

o Compute how loss L changes with respect to each output pixel z, (denoted by (?TL).
q

o Multiply this by gradient of each output pixel x, with respect to weight W, (denoted by 55;1")

We then sum over all output pixels z,.

Theorem 2: Weights W gradients

ifg<a

Oz, {0
= Az o
aWa - Zq’EAq(a) Wq/_a X oW,

a

—Tg—q ifg>a

Proof. We will prove Theorem 2 by induction on the partial ordering of pixels.

Base Case:

drg
For ¢ < a, we have W =

This is because in the inverse of convolution operation, z, does not directly depend on W,. The weight W, only
affects pixels that come after ¢ in the partial ordering.

Inductive Step: Assume the theorem holds for all pixels less than ¢ in the partial ordering. We will prove it
holds for ¢ > a.

From Equation (7), we have:

Yq = Tq + Z W k)—q4r * Tr (16)
reA(q)
Rearranging this equation 16:
Lg =Yg — Z W(k,k)—q+r * Ty (17)
reA(q)

Now, let’s differentiate both sides of 17with respect to Wj:

Ox Jy OW (ke k) —q+r ox,
oW, = W, 2 (ow, Lt Wen-arr o (18)
a a ’I"GA(q) a a
Note that gv?{/qa = 0 because y is the input to the inverse convolution and doesn’t depend on W.
Also, %‘4};"” =1if (k, k) — ¢+ r = a, and 0 otherwise.
Let Ag(a) = {r € A(q) : (k,k) — ¢+ r = a}. Then we can rewrite the equation 18 as 19:
oz oz,
51/{/? = Z Tr = Z Wik k)—gtr - oW (19)
@ relAg(a) reA(q) “

The first sum simplifies to —z,_, because r = ¢ — (k, k) + a for r € Aq(a).

In the second sum, we can use the inductive hypothesis for g&; because r < q.
Therefore: 5 5
Zq ;-
=—Tga— O Wirk—gir e 20
ow, ~ " (kR)=atr gy, (20)

reA(q)

The right side of 20 is equivalent to the second case in the theorem.

Thus, by induction, the theorem holds for all pixels q. O

