

Inverse-Flow: Parallel Backpropagation for Inverse of a Convolution with Application to Normalizing Flows

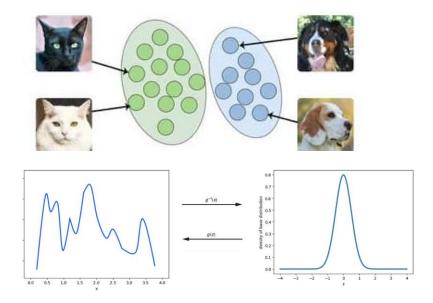
Sandeep Nagar, Girish Varma

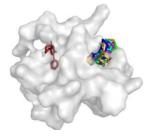
MLL and C-STAR International Institute of Information Technology Hyderabad

Generative Models

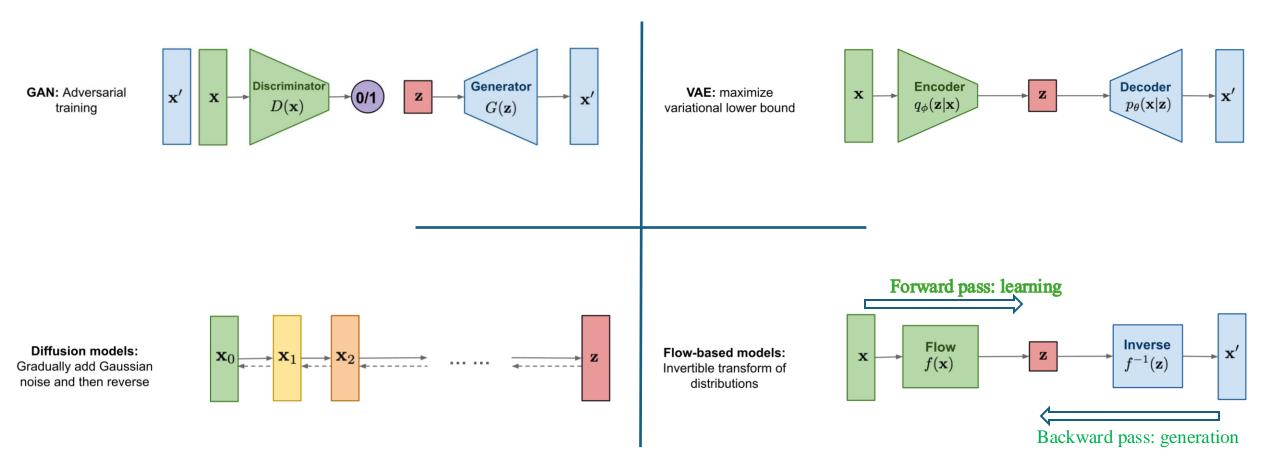
- Learn the underlying probability distribution of the dataset.
- Generate new, previously unseen samples that fit same distribution.
- Generates realistic samples.
- Applications:
 - Images,
 - Audio,
 - Text,
 - Drug design.

"a corgi playing a flame throwing trumpet"





Generative Models¹



¹Bond-Taylor, Sam, Adam Leach, Yang Long, and Chris G. Willcocks. "Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models." *IEEE transactions on pattern analysis and machine intelligence* (2021).

Designing Fast and Invertible Normalizing Flow Models

A quote from a famous statistician, Goerge Box:

"All models are wrong, but some are useful."

Why NF?

Other Generative Models¹:

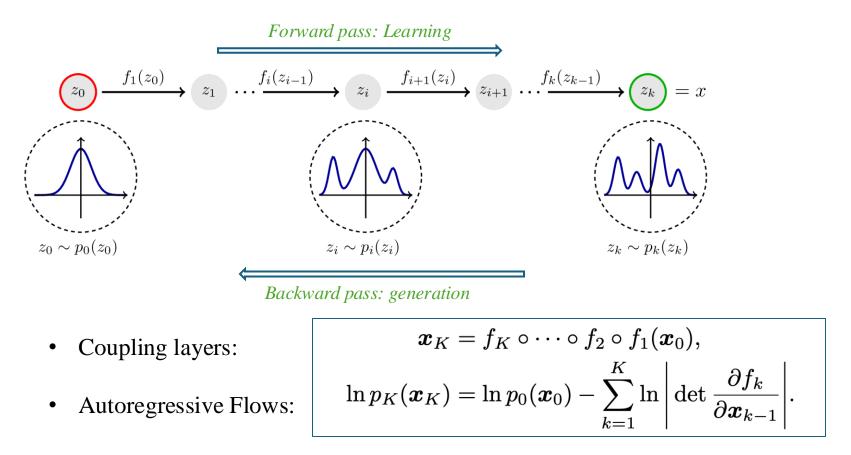
- Approximate models.
- GANs: Optimization can be challenging and unstable.
- VAEs: Blurry samples and struggle capturing complex data.
- AR: Generate samples sequentially.
- EBMs: High variance training, Slow training, and sampling.

Normalizing flow Models¹:

- Probabilistic models,
- High-dimensional spaces,
- Combinatorial spaces,
- Tractable
- One-to-one mapping.
- Latent space exploration (z).
- Need Fast Invertible Function, y = f(x)
- Intuitive Maximum Likelihood loss function

¹Bond-Taylor, Sam, Adam Leach, Yang Long, and Chris G. Willcocks. "Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models." *IEEE transactions on pattern analysis and machine intelligence* (2021).

Normalizing Flows Models

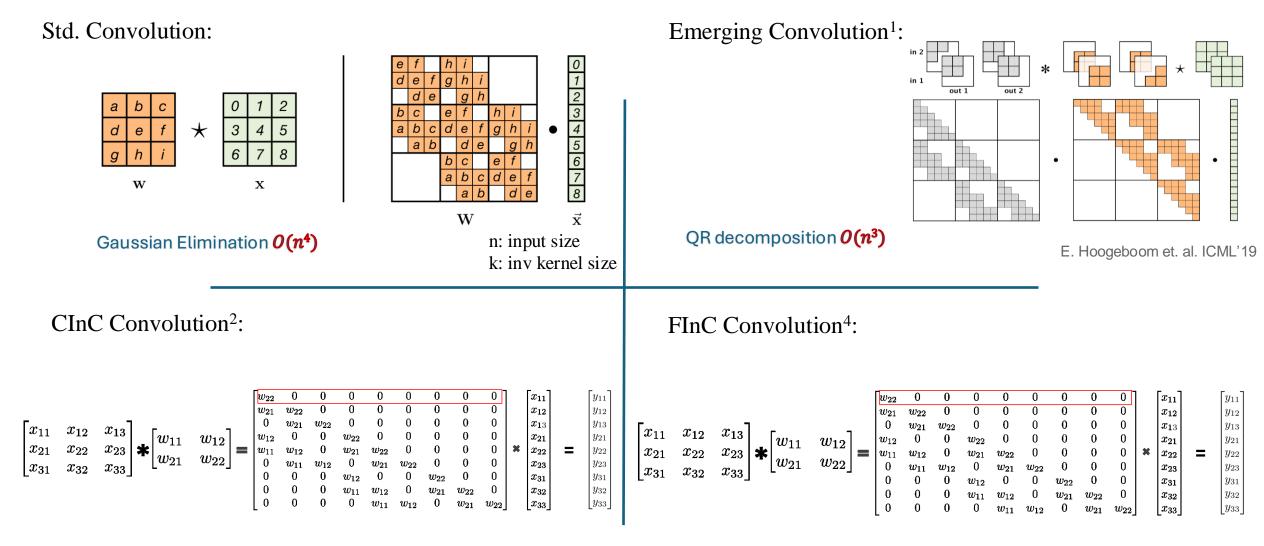


Problem flow models:

- restricted triangular Jacobian,
- meaning that all inputs cannot interact with each other.

¹Bond-Taylor, Sam, Adam Leach, Yang Long, and Chris G. Willcocks. "Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models." *IEEE transactions on pattern analysis and machine intelligence* (2021).

Complexity of finding the Inverse of Convolution



Back Substitution and Parallel $O(k^2n)$

k: input size

Back Substitution $O(n^2)$

Backpropagation algorithm for the Inverse of Convolution Layer

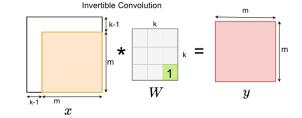
For training: x = y * W' Inverse of Std Conv.

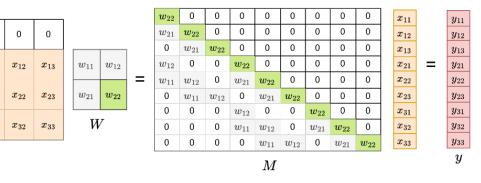
For sampling: y = x * W Std. Convolution

where w' = inv(W).

Advantages: - Independent of the size (m)

- Fast sampling
- Backprop algorithm for the Inverse of Convolution





$$y_p = x_p + \sum_{q \in \Delta(p)} W_{(k,k)-p+q} \cdot x_q \tag{1}$$

Using chain rule of differentiation, we get that

$$\frac{\partial L}{\partial y_p} = \sum_q \frac{\partial L}{\partial x_q} \times \frac{\partial x_q}{\partial y_p}.$$
 (2)

Theorem 1.

0

0

0

0

x

0

 x_{11}

 x_{21}

 x_{31}

$$\frac{\partial x_q}{\partial y_p} = \begin{cases} 1 - \sum_{q \in \Delta(p)} W_{(k,k)-p+q} \cdot \frac{\partial x_q}{\partial y_p} & \text{ if } p = q \\ 0 & \text{ if } q \not\leq p \\ -\sum_{r \in \Delta(p)} W_{(k,k)-r} \frac{\partial x_{p-r'}}{\partial y_p} & \text{ otherwise.} \end{cases}$$

Theorem 2.

$$\frac{\partial x_q}{\partial W_a} = \begin{cases} 0 & \text{if } q \le a \\ -\sum_{q' \in \Delta q(a)} W_{q'-a} \cdot \frac{\partial x_{q-q'}}{\partial W_a} - x_{q-a} & \text{if } q > a \end{cases}$$

Inverse-Flow: Inverse of Convolution and its Backpropagation Algorithm

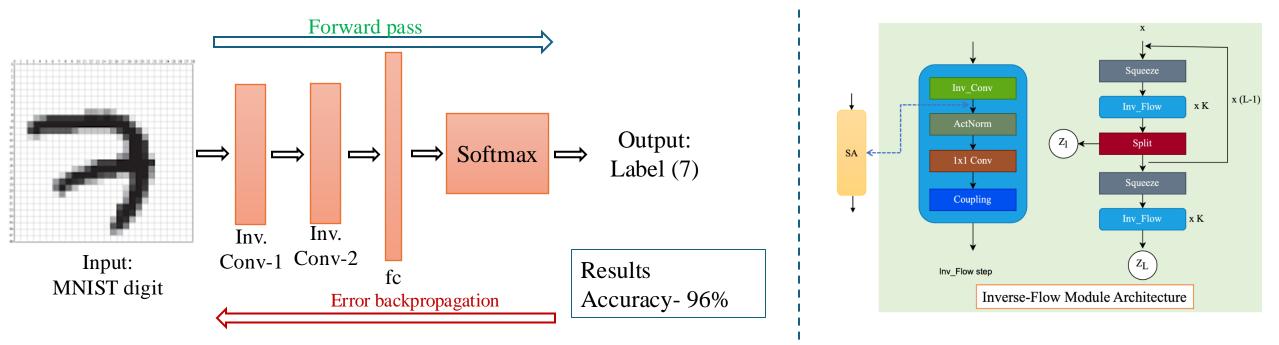
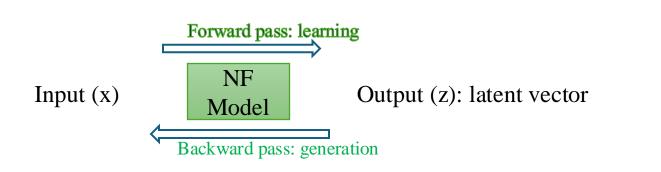


Image Generation using the above-proposed Inverse Convolution Layers and Backpropagation Algorithm



Inverse-Flow: Inverse of Convolution and Backpropagation Algorithm

Results:

Table 3: Performance comparison for MNIST with block size (K = 16) and number of blocks (L = 2).

Method	\mathbf{ST}	NLL	BPD	Param	Inverse
SNF	$99~{\pm}2.1$	699	1.28	10.1	approx
FIncFlow	$90\ \pm 2.2$	655	1.15	10.2	\mathbf{exact}
MintNet	$320{\pm}2.8$	630	0.98	125.9	approx
Emerging	$814{\pm}6.2$	640	1.09	11.4	\mathbf{exact}
\rightarrow Inverse-Flow	52 ± 1.3	710	1.31	1.6	exact

Table 6: Performance comparison for CIFAR dataset with block size (K = 16) and number of blocks (L = 2). SNF uses approx for inverse, and MintNet uses autoregressive functions. *time in seconds.

Method	BPD	\mathbf{ST}	\mathbf{FT}	Param
SNF	3.52	16.8 ± 2.7	609 ± 5.4	1.682
MintNet	3.51	$25.0^{*} \pm 1.5$	$2458\ {\pm}6.2$	12.466
Woodbury	3.48	$7654.4\ {\pm}13.5$	$119\ {\pm}2.5$	12.49
MaCow	3.40	790.8 ± 4.3	1080 ± 6.6	2.68
CInC Flow	3.46	$1710.0\ {\pm}9.5$	$615\ \pm 5.0$	2.62
Butterfly Flow	3.39	311.8 ± 4.0	1325 ± 7.5	12.58
FInc Flow	3.59	194.8 ± 2.5	548 ± 6.2	2.72
Inverse-Flow	3.57	$91.6\ {\pm}6.5$	$722\ \pm7.0$	1.76

Ablation Study:

	input size	Sampling Time (ST)	Forward Time (FT)	GPU memory (GB)
_	256×256	16.54 ± 0.21	$427\ {\pm}20$	8.025
	128×128	16.22 ± 0.23	$342\ {\pm}15$	3.822
	64x64	15.94 ± 0.14	$264\ \pm 11$	1.316
	32x32	15.53 ± 0.29	$224\ \pm 11$	0.375
_	16x16	15.55 ± 0.12	$211~{\pm}10$	0.131

Table 7: Inverse-Flow: K = 2, L = 32, Sample size = 100, batch size = 100. All times in milliseconds

input size	\mathbf{ST}	\mathbf{FT}	memory (GB)
256×256	23.08 ± 0.17	$285\ {\pm}09$	8.016
128×128	20.74 ± 0.15	$265\ \pm 15$	3.822
64x64	17.99 ± 0.40	$243\ {\pm}11$	1.314
32x32	16.71 ± 0.12	$238\ {\pm}11$	0.359
16x16	$17.21\ {\pm}0.22$	$255\ {\pm}10$	0.129

Table 8: FInC Flow: K = 2, L=32. Sample size =100, batch size = 100. All times in milliseconds

kernel size	Sampling Time (ST)	Forward Time (FT)	Params (M)
11x11	17.87 ± 0.42	$2428\ {\pm}28$	6.068
9x9	17.36 ± 0.22	$1762\ {\pm}30$	5.146
7x7	19.20 ± 0.10	$1461\ {\pm}23$	4.407
5x5	20.79 ± 0.15	$934\ \pm 17$	3.856
3x3	18.11 ± 0.20	$402\ \pm 08$	3.487
2x2	17.90 ± 0.25	$364\ {\pm}07$	3.372

Table 10: Inverse Flow model size and sampling time for different kernel sizes: Model Arch, K = 2, L=32. Sample size = 100, batch size = 100. All times in milliseconds

Questions?

