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Generative AI

• Generative AI refers to a class of artificial intelligence algorithms that have the 
capability to generate new content, such as text, images, or other forms of data, 
based on patterns and information present in the training data

• Text: GPT-3, Chat-GPT, PaLM, Llama etc.

• Images: GAN, StyleGAN, DeepCream

• Art: DALL-E, Aiva

• Audio: GANs, Normalizing Flows, VAE models



Generative AI

Involves around 4 types of generative models:

1. GAN(Generative Adversarial Networks): The generator creates synthetic data, while the 
discriminator evaluates whether the generated data is real or fake.

2. VAE(Variational Auto Encoders): Consists of an Encoder which compresses the data and a 
Decoder which tries to get the original data from a compressed encoded data

3. Normalizing Flows: Generates data by simply transforming a Normal Distribution by a series of 
invertible and differentiable functions

4. Diffusion Models: These models transform a simple and known distribution (e.g., Gaussian 
noise) into a complex and high-dimensional distribution that matches the characteristics of the 
target data. 



Why Normalizing Flows 

1. Use of bijective and differentiable allows models for easy generation and manipulation of data

2. Exact Likelihood: Unlike all the other models, we can actually compute the probability 
distribution of the data

3.  Flexible and Explicit Density Modeling

4. Versatile data generation
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But the generation of samples can be extremely slow



Our Contributions

We develop a system/model which

1. has a fast parallel inversion algorithm with running time O(nk2) (n is height and width of the 
input image and k is kernel size)

2. masks the minimal amount of learnable parameters in a layer

3. gives better sampling time comparable to other k × k convolution-based models on real-world 
benchmarks.



Normalizing Flows

• fi’s are both differentiable and invertible
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Convolution

* =



Convolution



Convolution – Padding, Stride, Step

Padding = 0, Stride = 1 Padding = “same”, Stride = 1 Padding = 0, Stride = 2

Image Credits: https://hannibunny.github.io/mlbook/neuralnetworks/convolutionDemos.html

https://hannibunny.github.io/mlbook/neuralnetworks/convolutionDemos.html


Notations

n – Height and Width of an image

H – Height of an image

W – Width of an image

k – Height and Width of a convolution filter (kernel)

k x k – Size of a kernel

C – Number of channels

* - Convolution operator



Convolution – A Linear Transformation

• At each step of the convolution, k x k multiplications occur

• In other words, every value in the output can be thought of as a 
linear function of kernel weights and subset of input (that is, input 
values in the corresponding window)

• In fact, we can say input is being linearly transformed by a matrix (M) 
referred to as Convolution Matrix



Convolution – A Linear Transformation

Fig. General Convolution – A linear transformation. M, the Convolution Matrix

=

Vectorized 
output



Inverse Techniques

Emerging Flows

• Leverages the fact that convolution is 
associative

• Two Auto regressive Convolutions are 
chained

• Each of the Auto regressive Convolution is 
chosen so that M is triangular

• Inverse Time is O(n2k2)
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Credits: Hoogeboom, E., Van Den Berg, R., and Welling, M. (2019). 

Emerging convolutions for generative normalizing flows. In International 
Conference on Machine Learning, pages 2771–2780. PMLR.



Convolution Techniques

MACOW: Masked Convolutional Flow

• Leverages the fact that convolution is associative

• Four Masked Convolutions are chained

• Inverse Time is O(nk2)

Credits: Ma, X., Kong, X., Zhang, S., and Hovy, E. (2019). Macow: Masked convolutional 
generative flow. Advances in Neural Information Processing Systems, 32.



Inverse Techniques

CInC Flow

• Padding the input is done so that the resulting M 
is triangular

• Very minimal amount of masking required

• Requires only 1 filter per convolution

• Inverse Time is O(n2k2)

Credits: Nagar, S., Dufraisse, M., and Varma, G. (2021). 

CInc flow: Characterizable invertible 3 x 3 convolution. In 

The 4th Workshop on Tractable Probabilistic Modeling.



Inverse Techniques
• We observe that techniques mask much of the kernel values and thus resulting in needing 

more kernels

• We observe that the inverse time is O(n2k2)

• Can we do better?

n x n – Size of the image; c – Number of Channels; k x k – Filter Size; d – Intermediate Latent Dimension Space  
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FInC Flow – Our Approach
FInC Flow

• Padding the input is done so that the resulting M is triangular

• Very minimal amount of masking required

• Inverse Time is O(nk2)



FINC Flow – Architecture
ActNorm
• Performs an affine transformation of the activations using a scale and bias parameter per 

channel, similar to batch normalization.

• Batch Normalization is not generally used because for large images, we need to train with 
batch_size = 1 and it creates a problem



FINC Flow – Architecture
Affine Coupling Layer
• A powerful reversible transformation where the forward function, the reverse function and 

the log-determinant are computationally efficient



FINC Flow – Architecture
Invertible 1x1 Convolution
• To incorporate a permutation along the channel dimension, we include a trainable 

invertible 1 × 1 convolution layer to generalize the permutation operation as:



Bijective Functions
Split
• Input is split into two halves across the channel dimension. We retain the first half and a 

function parameterized by first half transform the second half.

• The transformed second half is modeled as Gaussian samples, are the latent vectors.

Squeeze
• This function/layer reduces the feature dimension by total four, two across the height 

dimension and two across the width dimension resulting in increases the channel 
dimension by four



FInC Flow – Our Approach
Theorem 1: The inverse of the pixels on the diagonals of a TL padded convolution can be 
computed independently and parallelly
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FInC Flow – Our Approach
Algorithm 1: Fast Parallel Inverse Algorithm for a TL Padded Convolution Block



FInC Flow – Our Approach
Theorem 2: Algorithm 1 uses only (H + W − 1)k2 sequential operations.

Proof:

We have proved in Theorem 1 that the inverse of pixels on a single diagonal can be computed 
parallelly in one iteration of Algorithm 1. Since there are H + W − 1 number of diagonals in a 
matrix and there are at maximum k2 entries in a row of the convolutional matrix, the number of 
sequential operations needed will be (H + W − 1)k2.



FInC Flow – Our Approach
Algorithm 2: Fast Inverse Algorithm for FInC Flow Unit



GPU (CUDA) - Architecture

CUDA Architecture



CUDA - Programming

A typical execution of a CUDA C/C++ code involves several steps like
1. Allocate memory on the host for input and output
2. Allocate memory on the device(GPU)
3. Copy data from host to device
4. Launch the kernel - CUDA function and execute it
5. Copy the results back to host
6. Free the memory on both the host and the device



CUDA - Programming

Algorithm 1 Code: Link
Algorithm 2 Code: Link

ThreadID Calculation Code

BlockID Calculation Code

https://github.com/aditya-v-kallappa/FInCFlow/blob/main/fastflow/utils/fastflow_cuda_inverse/cinc_cuda_kernel_level1.cu
https://github.com/aditya-v-kallappa/FInCFlow/blob/main/fastflow/utils/fastflow_cuda_inverse/cinc_cuda_kernel_level2.cu


CUDA – Main Function



CUDA – Kernel 



Results
Comparison of BPD, FT, ST with other Convolution Based Models

• Datasets Used:
• MNIST

• CIFAR-10

• Imagenet 32x32

• Imagenet 64x64



Results
Comparison of Sample Times with other models



Results 
Generate Samples



Results 
Image Reconstruction

Input Images Reconstructed Images



Results 

Comparison of Algorithm 1 and Algorithm 2



Conclusion 

With a parallel inversion approach, we present a k × k invertible convolution for Normalizing flow models. We 
utilize it to develop a model with highly efficient sampling pass, normalizing flow architecture. We implement 
our parallel algorithm on GPU and presented benchmarking results, which show a significant enhancement in 
forward and sampling speeds when compared to alternative methods for k × k invertible convolution



Any Questions?

https://github.com/aditya-v-kallappa/FInCFlow
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