
FInC Flow: Fast and Invertible k × k Convolutions
for Normalizing Flows

International Institute of Information Technology, Hyderabad, India

Aditya V Kallappa
2019702012
aditya.kallappa@research.iiit.ac.in

THESIS DEFENSE

mailto:aditya.kallappa@research.iiit.ac.in

• Prerequisites – Generative AI

• Normalizing Flows

• Convolution – A Linear Transformation

• Inverse of convolution

• Inverse Techniques

• FInC Flow – Our Work

• GPU implementation

Outline

Generative AI

• Generative AI refers to a class of artificial intelligence algorithms that have the
capability to generate new content, such as text, images, or other forms of data,
based on patterns and information present in the training data

Generative AI

• Generative AI refers to a class of artificial intelligence algorithms that have the
capability to generate new content, such as text, images, or other forms of data,
based on patterns and information present in the training data

• Text: GPT-3, Chat-GPT, PaLM, Llama etc.

Generative AI

• Generative AI refers to a class of artificial intelligence algorithms that have the
capability to generate new content, such as text, images, or other forms of data,
based on patterns and information present in the training data

• Text: GPT-3, Chat-GPT, PaLM, Llama etc.

• Images: GAN, StyleGAN, DeepCream

Generative AI

• Generative AI refers to a class of artificial intelligence algorithms that have the
capability to generate new content, such as text, images, or other forms of data,
based on patterns and information present in the training data

• Text: GPT-3, Chat-GPT, PaLM, Llama etc.

• Images: GAN, StyleGAN, DeepCream

• Art: DALL-E, Aiva

• Audio: GANs, Normalizing Flows, VAE models

Generative AI

Involves around 4 types of generative models:

1. GAN(Generative Adversarial Networks): The generator creates synthetic data, while the
discriminator evaluates whether the generated data is real or fake.

2. VAE(Variational Auto Encoders): Consists of an Encoder which compresses the data and a
Decoder which tries to get the original data from a compressed encoded data

3. Normalizing Flows: Generates data by simply transforming a Normal Distribution by a series of
invertible and differentiable functions

4. Diffusion Models: These models transform a simple and known distribution (e.g., Gaussian
noise) into a complex and high-dimensional distribution that matches the characteristics of the
target data.

Why Normalizing Flows

1. Use of bijective and differentiable allows models for easy generation and manipulation of data

2. Exact Likelihood: Unlike all the other models, we can actually compute the probability
distribution of the data

3. Flexible and Explicit Density Modeling

4. Versatile data generation

Why Normalizing Flows

1. Use of bijective and differentiable allows models for easy generation and manipulation of data

2. Exact Likelihood: Unlike all the other models, we can actually compute the probability
distribution of the data

3. Flexible and Explicit Density Modeling

4. Versatile data generation

But the generation of samples can be extremely slow

Our Contributions

We develop a system/model which

1. has a fast parallel inversion algorithm with running time O(nk2) (n is height and width of the
input image and k is kernel size)

2. masks the minimal amount of learnable parameters in a layer

3. gives better sampling time comparable to other k × k convolution-based models on real-world
benchmarks.

Normalizing Flows

• fi’s are both differentiable and invertible

. . .

f1
-1 f2

-1 f3
-1 fK

-1

f1 f2
f3 fK

z0 z1 z2
zK

Normalizing Flows

. . .

f1 fK-2 fK-1
fK

f1
-1 fK-2

-1 fK-1
-1 fK

-1

Normalizing Flows

• fi’s are both differentiable and invertible

. . .

f1
-1 f2

-1 f3
-1 fK

-1

f1 f2
f3 fK

z0 z1 z2
zK

Normalizing Flows NLL Derivation

Normalizing Flows NLL Derivation

Normalizing Flows NLL Derivation

Normalizing Flows NLL Derivation

Normalizing Flows NLL Derivation

Convolution

* =

Convolution

Convolution – Padding, Stride, Step

Padding = 0, Stride = 1 Padding = “same”, Stride = 1 Padding = 0, Stride = 2

Image Credits: https://hannibunny.github.io/mlbook/neuralnetworks/convolutionDemos.html

https://hannibunny.github.io/mlbook/neuralnetworks/convolutionDemos.html

Notations

n – Height and Width of an image

H – Height of an image

W – Width of an image

k – Height and Width of a convolution filter (kernel)

k x k – Size of a kernel

C – Number of channels

* - Convolution operator

Convolution – A Linear Transformation

• At each step of the convolution, k x k multiplications occur

• In other words, every value in the output can be thought of as a
linear function of kernel weights and subset of input (that is, input
values in the corresponding window)

• In fact, we can say input is being linearly transformed by a matrix (M)
referred to as Convolution Matrix

Convolution – A Linear Transformation

Fig. General Convolution – A linear transformation. M, the Convolution Matrix

=

Vectorized
output

Inverse Techniques

Emerging Flows

• Leverages the fact that convolution is
associative

• Two Auto regressive Convolutions are
chained

• Each of the Auto regressive Convolution is
chosen so that M is triangular

• Inverse Time is O(n2k2)

K
2
∗ (K

1
∗ X) = (K

2
∗ K

1
) ∗ X

Credits: Hoogeboom, E., Van Den Berg, R., and Welling, M. (2019).

Emerging convolutions for generative normalizing flows. In International
Conference on Machine Learning, pages 2771–2780. PMLR.

Convolution Techniques

MACOW: Masked Convolutional Flow

• Leverages the fact that convolution is associative

• Four Masked Convolutions are chained

• Inverse Time is O(nk2)

Credits: Ma, X., Kong, X., Zhang, S., and Hovy, E. (2019). Macow: Masked convolutional
generative flow. Advances in Neural Information Processing Systems, 32.

Inverse Techniques

CInC Flow

• Padding the input is done so that the resulting M
is triangular

• Very minimal amount of masking required

• Requires only 1 filter per convolution

• Inverse Time is O(n2k2)

Credits: Nagar, S., Dufraisse, M., and Varma, G. (2021).

CInc flow: Characterizable invertible 3 x 3 convolution. In

The 4th Workshop on Tractable Probabilistic Modeling.

Inverse Techniques
• We observe that techniques mask much of the kernel values and thus resulting in needing

more kernels

• We observe that the inverse time is O(n2k2)

• Can we do better?

n x n – Size of the image; c – Number of Channels; k x k – Filter Size; d – Intermediate Latent Dimension Space

Top Left Convolutions

* =

Top Left Convolutions

Top Left Convolutions

* =

Top Left Convolutions

* =

Top Left Convolutions

* =

Top Left Convolutions

* =

Top Left Convolutions

* =

Top Left Convolutions

* =

Top Left Convolutions

* =

Top Left Convolutions

* =

Top Left Convolutions

* =

Top Left Convolutions

* =

Top Left Convolutions

Top Left Convolutions

* =

Top Left Convolutions

* =

Top Left Convolutions

* =

Top Left Convolutions

* =

Top Left Convolutions

* =

Top Left Convolutions

Top Left Convolutions

FInC Flow – Our Approach

FInC Flow – Our Approach
FInC Flow

• Padding the input is done so that the resulting M is triangular

• Very minimal amount of masking required

• Inverse Time is O(nk2)

FINC Flow – Architecture
ActNorm
• Performs an affine transformation of the activations using a scale and bias parameter per

channel, similar to batch normalization.

• Batch Normalization is not generally used because for large images, we need to train with
batch_size = 1 and it creates a problem

FINC Flow – Architecture
Affine Coupling Layer
• A powerful reversible transformation where the forward function, the reverse function and

the log-determinant are computationally efficient

FINC Flow – Architecture
Invertible 1x1 Convolution
• To incorporate a permutation along the channel dimension, we include a trainable

invertible 1 × 1 convolution layer to generalize the permutation operation as:

Bijective Functions
Split
• Input is split into two halves across the channel dimension. We retain the first half and a

function parameterized by first half transform the second half.

• The transformed second half is modeled as Gaussian samples, are the latent vectors.

Squeeze
• This function/layer reduces the feature dimension by total four, two across the height

dimension and two across the width dimension resulting in increases the channel
dimension by four

FInC Flow – Our Approach
Theorem 1: The inverse of the pixels on the diagonals of a TL padded convolution can be
computed independently and parallelly

FInC Flow – Our Approach
Theorem 1: The inverse of the pixels on the diagonals of a TL padded convolution can be
computed independently and parallelly

FInC Flow – Our Approach
Theorem 1: The inverse of the pixels on the diagonals of a TL padded convolution can be
computed independently and parallelly

FInC Flow – Our Approach
Theorem 1: The inverse of the pixels on the diagonals of a TL padded convolution can be
computed independently and parallelly

FInC Flow – Our Approach

FInC Flow – Our Approach

FInC Flow – Our Approach

FInC Flow – Our Approach
Algorithm 1: Fast Parallel Inverse Algorithm for a TL Padded Convolution Block

FInC Flow – Our Approach
Theorem 2: Algorithm 1 uses only (H + W − 1)k2 sequential operations.

Proof:

We have proved in Theorem 1 that the inverse of pixels on a single diagonal can be computed
parallelly in one iteration of Algorithm 1. Since there are H + W − 1 number of diagonals in a
matrix and there are at maximum k2 entries in a row of the convolutional matrix, the number of
sequential operations needed will be (H + W − 1)k2.

FInC Flow – Our Approach
Algorithm 2: Fast Inverse Algorithm for FInC Flow Unit

GPU (CUDA) - Architecture

CUDA Architecture

CUDA - Programming

A typical execution of a CUDA C/C++ code involves several steps like
1. Allocate memory on the host for input and output
2. Allocate memory on the device(GPU)
3. Copy data from host to device
4. Launch the kernel - CUDA function and execute it
5. Copy the results back to host
6. Free the memory on both the host and the device

CUDA - Programming

Algorithm 1 Code: Link
Algorithm 2 Code: Link

ThreadID Calculation Code

BlockID Calculation Code

https://github.com/aditya-v-kallappa/FInCFlow/blob/main/fastflow/utils/fastflow_cuda_inverse/cinc_cuda_kernel_level1.cu
https://github.com/aditya-v-kallappa/FInCFlow/blob/main/fastflow/utils/fastflow_cuda_inverse/cinc_cuda_kernel_level2.cu

CUDA – Main Function

CUDA – Kernel

Results
Comparison of BPD, FT, ST with other Convolution Based Models

• Datasets Used:
• MNIST

• CIFAR-10

• Imagenet 32x32

• Imagenet 64x64

Results
Comparison of Sample Times with other models

Results
Generate Samples

Results
Image Reconstruction

Input Images Reconstructed Images

Results

Comparison of Algorithm 1 and Algorithm 2

Conclusion

With a parallel inversion approach, we present a k × k invertible convolution for Normalizing flow models. We
utilize it to develop a model with highly efficient sampling pass, normalizing flow architecture. We implement
our parallel algorithm on GPU and presented benchmarking results, which show a significant enhancement in
forward and sampling speeds when compared to alternative methods for k × k invertible convolution

Any Questions?

https://github.com/aditya-v-kallappa/FInCFlow

	Slide 1: FInC Flow: Fast and Invertible k × k Convolutions for Normalizing Flows
	Slide 2: Outline
	Slide 3: Generative AI
	Slide 4: Generative AI
	Slide 5: Generative AI
	Slide 6: Generative AI
	Slide 7: Generative AI
	Slide 8: Why Normalizing Flows
	Slide 9: Why Normalizing Flows
	Slide 10: Our Contributions
	Slide 11: Normalizing Flows
	Slide 12: Normalizing Flows
	Slide 13: Normalizing Flows
	Slide 14: Normalizing Flows NLL Derivation
	Slide 15: Normalizing Flows NLL Derivation
	Slide 16: Normalizing Flows NLL Derivation
	Slide 17: Normalizing Flows NLL Derivation
	Slide 18: Normalizing Flows NLL Derivation
	Slide 19: Convolution
	Slide 20: Convolution
	Slide 21: Convolution – Padding, Stride, Step
	Slide 22: Notations
	Slide 23: Convolution – A Linear Transformation
	Slide 24: Convolution – A Linear Transformation
	Slide 25: Inverse Techniques
	Slide 26: Convolution Techniques
	Slide 27: Inverse Techniques
	Slide 28: Inverse Techniques
	Slide 29: Top Left Convolutions
	Slide 30: Top Left Convolutions
	Slide 31: Top Left Convolutions
	Slide 32: Top Left Convolutions
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Top Left Convolutions
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: FInC Flow – Our Approach
	Slide 50: FInC Flow – Our Approach
	Slide 51: FINC Flow – Architecture
	Slide 52: FINC Flow – Architecture
	Slide 53: FINC Flow – Architecture
	Slide 54: Bijective Functions
	Slide 57: FInC Flow – Our Approach
	Slide 58: FInC Flow – Our Approach
	Slide 59: FInC Flow – Our Approach
	Slide 60: FInC Flow – Our Approach
	Slide 61: FInC Flow – Our Approach
	Slide 62: FInC Flow – Our Approach
	Slide 63: FInC Flow – Our Approach
	Slide 64: FInC Flow – Our Approach
	Slide 65: FInC Flow – Our Approach
	Slide 66: FInC Flow – Our Approach
	Slide 67: GPU (CUDA) - Architecture
	Slide 68: CUDA - Programming
	Slide 69: CUDA - Programming
	Slide 70: CUDA – Main Function
	Slide 71: CUDA – Kernel
	Slide 72: Results
	Slide 73: Results
	Slide 74: Results
	Slide 75: Results
	Slide 76: Results
	Slide 77: Conclusion
	Slide 78

