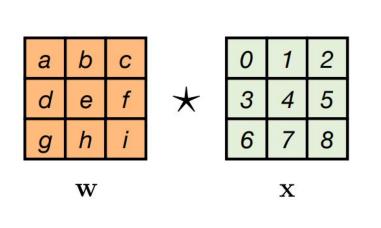
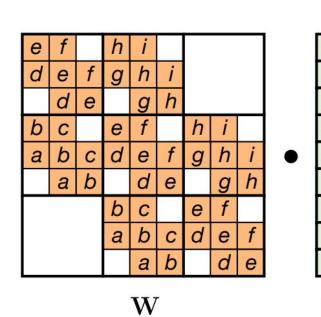
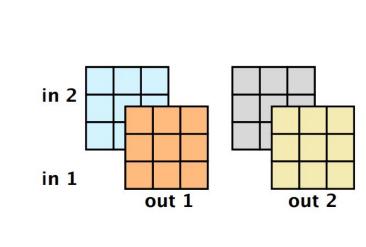
CInC Flow: Characterizable Invertible 3×3 Convolution Sandeep Nagar¹, Marius Dufraisse², Girish Varma¹

@tps://github.com/Naagar/Normalizing_Flow_3x3_inv Sandeep.nagar@research.iiit.ac.in ¹Machine Learning Lab, IIIT Hyderabad, India. ²CS Dept., École Normale Supérieure (ENS), Paris-Saclay, France.

Invertible Convolutions for Normalizing Flows







loogeboom et al. Emerging Convolutions for Generative Normalizing Flows. ICM

A 3x3 convolution with 1 in and out channels and its matrix form.

A 3x3 convolution with 2 in and out channels and its matrix form.

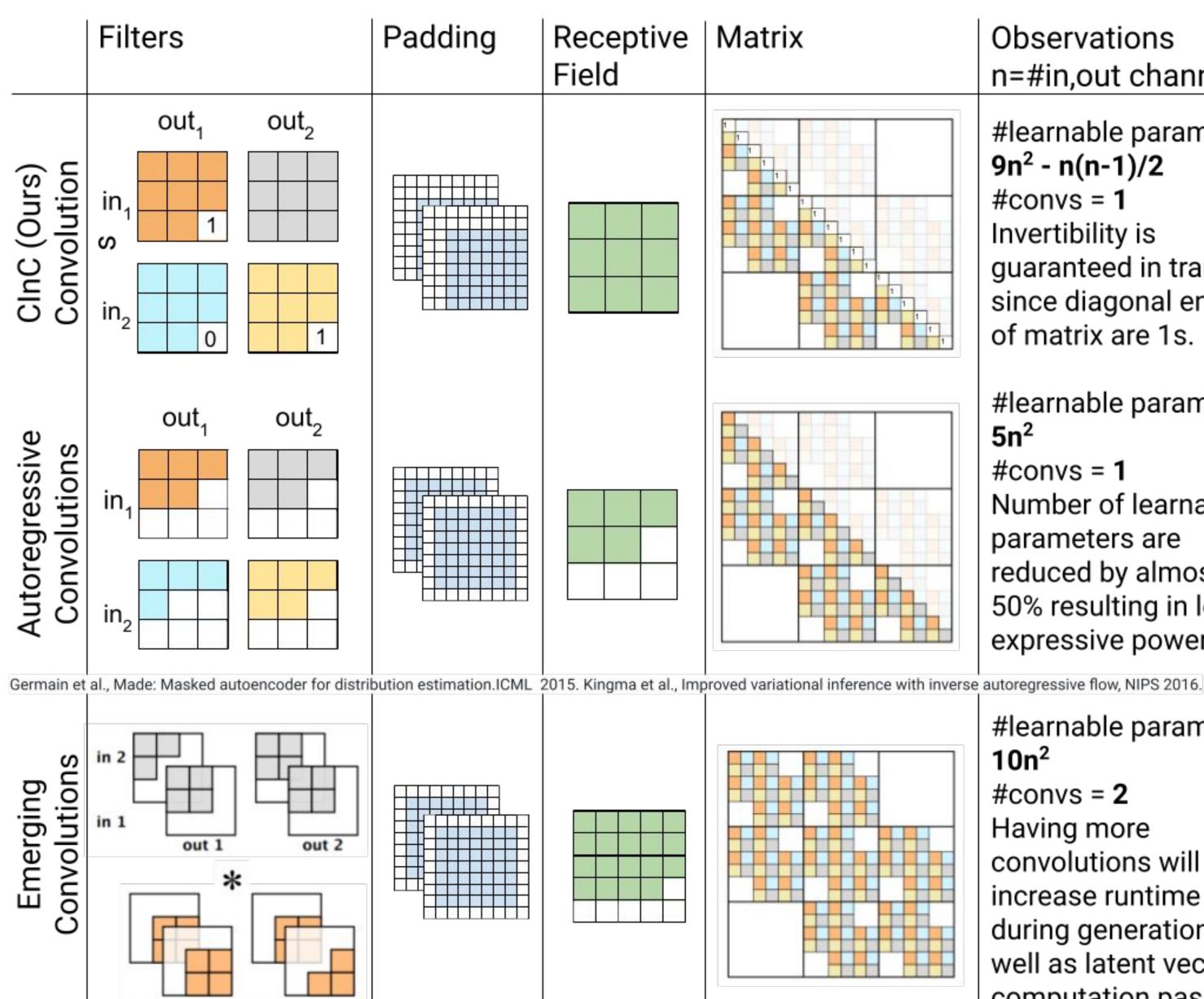
A general convolution need not be invertible and hence cannot be used for designing normalizing flows, which can be trained using Maximum Likelihood.

Goal: Design CNNs that are invertible, which can be used to build efficient and expressive normalizing flows..

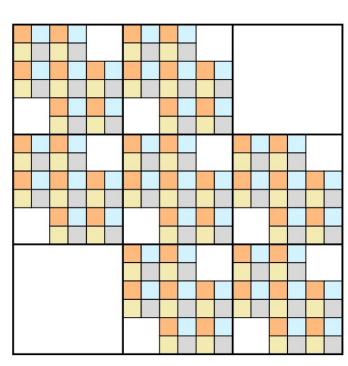
Charecterizable Invertible Convolution (CInC)

We design a convolution which

- 1. is guaranteed to be invertible during training,
- 2. has more learnable parameters leading to better expressivity,
- 3. and is easy to implement efficiently.



Hoogeboom et al. Emerging Convolutions for Generative Normalizing Flows. ICML, 2019.



Observations n=#in,out channels. #learnable parameters 9n² - n(n-1)/2 #convs = ' Invertibility is guaranteed in training since diagonal entries of matrix are 1s. #learnable parameters 5n² #convs = 1 Number of learnable parameters are reduced by almost 50% resulting in lesser expressive power. #learnable parameters 10n² #convs = **2** Having more convolutions will increase runtime during generation as well as latent vector

computation passes.

Theoretical Guarantees

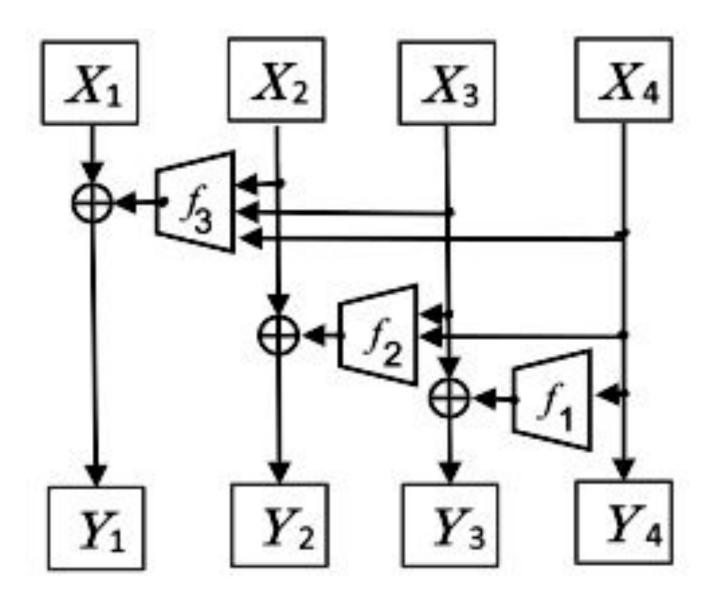
Characterization: for N=1, diagonal entries of convolution matrix (M) are K_{nn} of kernel (K) with size n and input is padded(top and left) with n-1. Assumption: N, M is invertible iff $K_{nn} \neq 0$. # input channels = # output channels

Improved Coupling Schemes

Coupling Layers: we propose to use a modified version of the coupling layer designed to have a bigger receptive field. Inspired from generalized Feistal (Hong et al., 2010.)

Quad-coupling (proposed):

We divide the input into four blocks $x_1, x_2, x_3, x_4 = y_4$



Why Quad-coupling?

expressive coupling mechanism 2. Flexibility

Model Architecture

L levels, and D flow modules per level.

Flow module: Actnorm, Inv. 3x3 conv, Quad-coupling

Squeeze module: reorders pixels by reducing the spatial dimensions by a half, and increasing the channel depth by four.

x: input, z: output

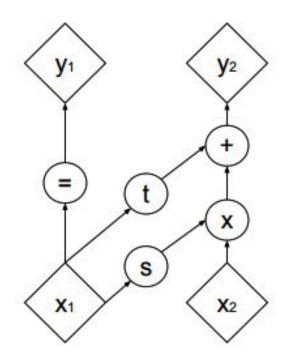
INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY

école-

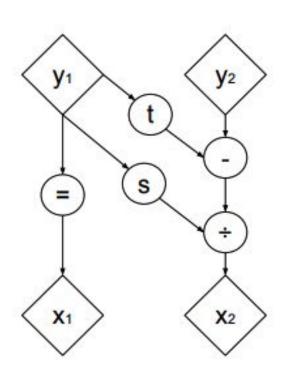
HYDERABAD

Affine coupling: Dinh et al.. 2017)

Divide the input into two blocks X_1 , X_2



(a) Forward propagation

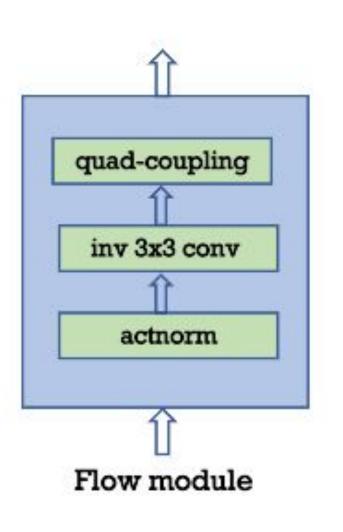


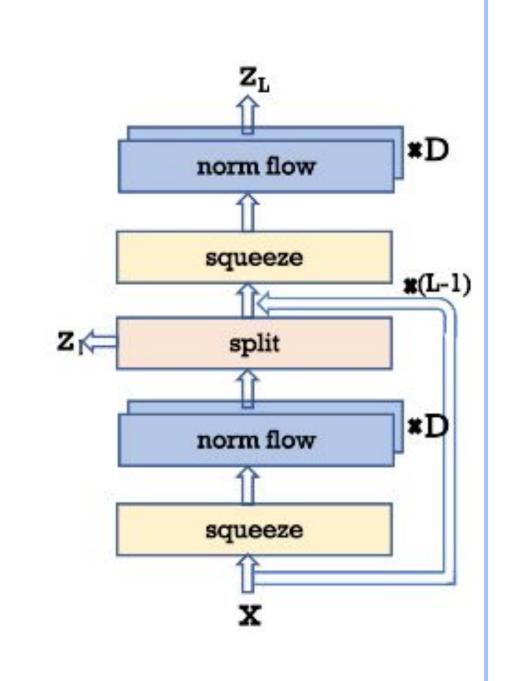
(b) Inverse propagation

-- output (y): concatenation of y_i

-- f_i and g_i are learned

-- component wise addition (+)





Benchmarks

Sai

At

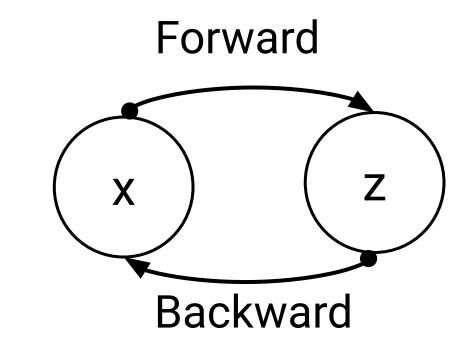
Bit

ampling time:(on one core CPU)		U)	Dataset	<u>Sampling</u> Emerging	<u>Sampling time (in sec)</u> Emerging CInC Flow	
Time (sec.) needed to sample 100 images is almost two time faster.			Cifar10	2.45	1.31	
			ImageNet	32 4.96	2.76	
blation for Quad Coupling			Coupling	Emerging 3x3	Our 3x3	
Bits per dimension				Inv. conv.	Inv. conv.	
for cifar10			Affine	3.3851	3.4209	
			Quad	3.3612	3.3879	
its per dimens	ion comparison					
Dataset	Glow	Emerging		CInC 3x3	+Quad	
Cifar10	3.36	3.34		3.3498	3.347	
ImageNet32	4.09	4.09		4.0140	4.0377	
ImageNet64	3.81	3.81		3.8946	3.8514	
Galaxy		2.2722		2.2739	2.2591	

Qualitative Results

Demonstrated image manipulation capabilities on the CelebA dataset which has various attributes.

add or remove features.



Younger

the 4th tractable probabilistic modeling workshop

tpm

Remove glasses

shape

Latent space (Z): by changing the z we

Hair color

Gradually modifying the age parameter:

Original

Fake